Abstract
In response to the COVID-19 pandemic, there have been various attempts to develop realistic models to both predict the spread of the disease and evaluate policy measures aimed at mitigation. Different models that operate under different parameters and assumptions produce radically different predictions, creating confusion among policy-makers and the general population and limiting the usefulness of the models. This newsletter article proposes a novel ensemble modeling approach that uses representative clustering to identify where existing model predictions of COVID-19 spread agree and unify these predictions into a smaller set of predictions. The proposed ensemble prediction approach is composed of the following stages: (1) the selection of the ensemble components, (2) the imputation of missing predictions for each component, and (3) representative clustering in application to time-series data to determine the degree of agreement between simulation predictions. The results of the proposed approach will produce a set of ensemble model predictions that identify where simulation results converge so that policy-makers and the general public are informed with more comprehensive predictions and the uncertainty among them.
Courtesy of NSF, we shared our vision at the 1st ACM SIGSPATIAL International Workshop on Modeling and Understanding the Spread of COVID-19 presented by Dr. Hamdi Kavak.
J-S. Kim, H. Kavak, A. Züfle, T. Anderson, “COVID-19 Ensemble Models Using Representative Clustering,” SIGSPATIAL Special, July 2020, Volume 12, Issue 2, pp 33-41
https://doi.org/10.1145/3431843.3431848